Spectroscopic studies on lipoprotein structure modification under oxidative stress

Author:

Tache Andreia123,Litescu Simona-Carmen1,Radu Gabriel-Lucian12

Affiliation:

1. National Institute for Biological Sciences, Center of Bioanalysis, Bucharest, Romania

2. University “Polytechnica” of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest, Romania

3. University “Polytechnica” of Bucharest, Faculty of Applied Chemistry and Materials Science, Bucharest 010737, Romania

Abstract

Matrix assisted laser desorption–ionization time of flight (MALDI-ToF) and infrared techniques were used to study oxidative modification of low density lipoproteins (LDL), considered to have the key role in biological process that initiates and accelerates the development of cardiovascular disease. The early identification of lipoperoxidation products creates the opportunity of the efficient prevention of eventual oxidative damages. MALDI analysis of LDL subjected toin vitrooxidation process initiated by 2,2-azobis(2-amidinopropane) dihydrochloride revealed that some fragments of lipoprotein changed the molecular weight by 16 and 32 Da due to the oxygen or hydroxyl groups attachment, and peroxide or hydroperoxide formation, while Fourier Transformed Infrared studies proved that lipoprotein changes its protein secondary conformation from predominantlyα-helix in predominantlyβ-turn. The increase in free radicals concentration correlated to structural changes, and the presence of transitional metal ion, copper (II), in the oxidation process lead to an enhancing of the damaging effects of free radicals on lipoprotein substrate. It was shown that the toxic effects of oxidants are delayed by the presence of glutathione (10 mM), an endogenous antioxidant.

Funder

IDEI

Publisher

Hindawi Limited

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3