Experimental and Numerical Study of Stagnant Zones in Pebble Bed

Author:

Jia Xinlong1,Yang Xingtuan1,Gui Nan1,Li Yu1,Tu Jiyuan12,Jiang Shengyao1

Affiliation:

1. Institute of Nuclear and New Energy Technology of Tsinghua University and the Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Beijing 100084, China

2. School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne, VIC 3083, Australia

Abstract

The experimental method (side area method) and DEM simulation have been carried out to analyse the stagnant zone in the quasi-two-dimensional silos. The side area method is a phenomenological method by means of investigating the interface features of different areas composed of different coloured pebbles. Two methods have been discussed to define the stagnant zone. In particular, the area of the stagnant zone has been calculated with the mean-streamline method, and the tracking time of different marking pebbles has been investigated with the stagnant time method to explore the kinematics characteristics of the pebbles. The stagnant zone is crucial for the safety of the pebble-bed reactor, and the practical reactor core must avoid the existence of the stagnant zone. Furthermore, this paper also analyses the effects of bed configuration (the bed height, the base angle, and the friction coefficient) on stagnant zone with the two methods mentioned above. In detail, the bed height shows little impact on the stagnant zones when the bed height exceeds a certain limit, while the base angle has negative prominent correlation with the stagnant zone. The friction coefficient effect seems complicated and presents the great nonlinearity, which deserves to be deeply investigated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3