Dual-Band Notch Filter Based on Twist Split Ring Resonators

Author:

Sun Haibin1,Feng Cai2,Huang Yongjun1ORCID,Wen Ruiming1,Li Jian1,Chen Weijian1,Wen Guangjun1

Affiliation:

1. Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks, Centre for RFIC and System Technology, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Electronic and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Abstract

A novel dual-band rectangular waveguide notch filter is experimentally investigated in this paper. Such filter is realized by integrating two pairs of split ring resonators (SRRs) printed on the two sides of a dielectric slab with twist angles and separated as a distance in the center of the rectangular waveguide. Due to the coupling effects between the twist SRRs and between the original SRRs and their mirror images generated by the metallic walls perpendicular to the E-field direction, it can flexibly contribute two disjunct resonance states and result in the dual-band notch properties. Furthermore, the two resonance frequencies can be controlled by changing the twist angles, resulting in the shifts of notch frequency bands.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Slot-Line UWB Bandpass Filters and Band-Notched UWB Filters;UWB Technology and its Applications;2019-03-06

2. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film;Scientific Reports;2017-09-20

3. Hybrid Microstrip/Slotline Ultra-Wideband Bandpass Filter with a Controllable Notch Band;International Journal of Antennas and Propagation;2017

4. Microstrip Stop-Band Filter using Split-Ring Resonator;Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems - ICCWCS'17;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3