Supervised Land Use Inference from Mobility Patterns

Author:

Caceres Noelia1ORCID,Benitez Francisco G.2ORCID

Affiliation:

1. Transportation Engineering Unit, AICIA, Camino de los Descubrimientos, s/n, 41092 Seville, Spain

2. Transportation Engineering, Faculty of Engineering, University of Seville, Camino de los Descubrimientos, s/n, 41092 Seville, Spain

Abstract

This paper addresses the relationship between land use and mobility patterns. Since each particular zone directly feeds the global mobility once acting as origin of trips and others as destination, both roles are simultaneously used for predicting land uses. Specifically this investigation uses mobility data derived from mobile phones, a technology that emerges as a useful, quick data source on people’s daily mobility, collected during two weeks over the urban area of Malaga (Spain). This allows exploring the relevance of integrating weekday-weekend trip information to better determine the category of land use. First, this work classifies patterns on trips originated and terminated in each zone into groups by means of a clustering approach. Based on identifiable relationships between activity and times when travel peaks appear, a preliminary categorization of uses is provided. Then, both grouping results are used as input variables in a K-nearest neighbors (KNN) classification model to determine the exact land use. The KNN method assumes that the category of an object must be similar to the category of the closest neighbors. After training the models, the findings reveal that this approach provides a precise land use categorization, yielding the best accuracy results for the major categories of land uses in the studied area. Moreover, as a result, the weekend data certainly contributes to finding more precise land uses as those obtained by just weekday data. In particular, the percentage of correctly predicted categories using both weekday and weekend is around 80%, while just weekday data reach 67%. The comparison with actual land uses also demonstrates that this approach is able to provide useful information, identifying zones with a specific clear dominant use (residential, industrial, and commercial), as well as multiactivity zones (mixed). This fact is especially useful in the context of urban environments where multiple activities coexist.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3