Nanoaerosols Including Radon Decay Products in Outdoor and Indoor Air at a Suburban Site

Author:

Smerajec Mateja1,Vaupotič Janja1

Affiliation:

1. Department of Environmental Sciences, Radon Center, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Abstract

Nanoaerosols have been monitored inside a kitchen and in the courtyard of a suburban farmhouse. Total number concentration and number size distribution (5–1000 nm) of general aerosol particles, as measured with a Grimm Aerosol SMPS+C 5.400 instrument outdoors, were mainly influenced by solar radiation and use of farming equipment, while, indoors, they were drastically changed by human activity in the kitchen. In contrast, activity concentrations of the short-lived radon decay products218Po,214Pb, and214Bi, both those attached to aerosol particles and those not attached, measured with a Sarad EQF3020-2 device, did not appear to be dependent on these activities, except on opening and closing of the kitchen window. Neither did a large increase in concentration of aerosol particles smaller than 10 or 20 nm, with which the unattached radon products are associated, augment the fraction of the unattached decay products significantly.

Funder

Slovenian Research Agency

Publisher

Hindawi Limited

Subject

Pharmacology,Toxicology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3