Structural Damage Localization in Plates Using Global and Local Modal Strain Energy Method

Author:

Le Thanh-Cao123ORCID,Ho Duc-Duy12ORCID,Nguyen Chi-Thien12ORCID,Huynh Thanh-Canh45ORCID

Affiliation:

1. Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam

2. Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam

3. Faculty of Civil Engineering, Nha Trang University, Nha Trang 57100, Vietnam

4. Faculty of Civil Engineering, Duy Tan University, Da Nang City 550000, Vietnam

5. Center for Construction, Mechanics, and Materials, Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam

Abstract

This paper presents an improvement to the modal strain energy (MSE) method for identifying structural damages in plate-type structures. A two-step MSE-based damage localization procedure, including a global step and a local step, is newly proposed to enhance the accuracy of detecting the location of structural damage. Firstly, the global step uses the mode shape data on the whole plate to locate the potentially damaged areas. Then, MSE is applied with a more dense mesh size on these local areas to detect damage in more detail. The proposed procedure’s feasibility is verified by analyzing an aluminum plate with various damaged scenarios. This study uses finite element analysis to acquire the plate's natural frequencies and mode shapes in intact and damaged states. A set of two damage detection capacity indicators are also newly presented to evaluate the precision of the proposed procedure. The diagnostic results demonstrate that the proposed approach uses less modal data than the original MSE method and accurately identifies the damage's locations in the plates with various edge conditions. Moreover, the combination of three first mode shapes and a damage threshold of 40% of the maximum normalized damage index gives the best results of damage localization.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3