The Effect of Abutment Angulation and Crown Material Compositions on Stress Distribution in 3-Unit Fixed Implant-Supported Prostheses: A Finite Element Analysis

Author:

Mosharraf Ramin1ORCID,Abbasi Mahsa2ORCID,Givehchian Pirooz3ORCID

Affiliation:

1. Dental Material Research Center and Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Prosthodontics, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran

3. Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Objective. The aim of this study was to evaluate influence of abutment angulation and restoration material compositions on the stress pattern in dental implants and their surrounding bone. Materials and Methods. In this finite element study, the six different solid 3D models of “mandibular 3-unit fixed implant-supported prostheses” were analyzed. In all of these models, a straight abutment was used for anterior implants at the second premolar site, and in order to posterior implant at the second molar site, abutments with three different angles (straight, 15, and 20°) were used. Also, two different restoration material compositions (porcelain fused to base metal (PFBM) and porcelain fused to noble metal (PFNM)) were considered for fixed implant supported restorations. A 450 N static force was exerted in a straight manner along the longitudinal axis of the anterior implant in a tripod, and the stress distribution was measured based on the restoration materials and abutment angulations of the models in the 3 sites of cortical, cancellous bone, and fixtures. The simulation was performed with ABAQUS 6.13 Software. Results. In all models, stress values in surrounding cortical bone were more than in spongy bone. Maximum stress levels in an anterior abutment-implant complex were seen in models with angled implants. In models with parallel implants, the stress level of a molar straight abutment-implant complex was less than that of premolar straight ones. In an angled posterior abutment-implant complex, less stress level was detected compared to straight ones. In all PFNB models, stress values were slightly more and distributed in a wider area of premolar straight abutments. Conclusion. Increasing an abutment angle, increases stress in surrounding bone and straight implant-abutment combination. It seems that the crown material composition affects stress distribution of the implant-abutment combination but does not affect stress distribution of surrounding bone.

Publisher

Hindawi Limited

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3