The Antitumor Effect of TPD52L2 Silencing on Oxaliplatin-Resistant Gastric Carcinoma Is Related to Endoplasmic Reticulum Stress In Vitro

Author:

Zhang Yu1,Yang Dejun1,Wei Ziran1,Zhang Xin1,Hu Zunqi1,Fu Hongbing1,Xu Jiapeng1ORCID,Wang Weijun1ORCID

Affiliation:

1. Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China

Abstract

Tumor protein D52-like 2 or simply TPD52L2 belongs to the TPD52 family which has been implicated in a variety of human carcinomas. However, the TPD52L2 function in the gastric carcinoma oxaliplatin (OXA) resistance remains elusive. The main objective of this study is to evaluate the TPD52L2 effect in OXA-resistant gastric carcinoma cells in vitro. Oxaliplatin-resistant gastric carcinoma cells were generated in MGC-803 and SGC-7901 cells. siRNA-mediated knockdown of TPD52L2 was investigated in OXA-resistant MGC-803-OXA and SGC-7901-OXA cells. qRT-PCR was performed to assess the expression level of TPD52L2 mRNA. TPD52L2 protein expression level, apoptosis, and endoplasmic reticulum (ER) stress-associated proteins were identified via immunoblotting analysis. MTT assay was conducted for the evaluation of cell viability, while colony-forming activity was carried out via crystal violet staining. SGC-7901-OXA and MGC-803-OXA cells were found to be more resistant to OXA, as compared to the parental cell lines. The expression of TPD52L2 was found to be upregulated in OXA-resistant cells. Knockdown of TPD52L2 suppressed cell colony-forming potency, cell growth, and development in OXA-resistant cells. TPD52L2 knockdown also enhanced the PARP and caspase-3 cleavage. ER-associated proteins such as PERK, GRP78, CHOP, and IRE1α were found to be elevated in TPD52L2 knockdown cells. ER stress might be involved in TPD52L2 knockdown-induced apoptosis in OXA-resistant gastric carcinoma cells.

Funder

Shanghai Municipal Health and Family Planning Commission

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3