Opposing Mixed Convection Heat Transfer for Turbulent Single-Phase Flows

Author:

Motegi Kosuke1ORCID,Sibamoto Yasuteru1ORCID,Hibiki Takashi2ORCID,Tsukamoto Naofumi3,Kaneko Junichi3

Affiliation:

1. Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan

2. Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

3. Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority, Roppongi First Building, 1-9-9 Roppongi, Minato-ku, Tokyo 106-8450, Japan

Abstract

Convection, wherein forced and natural convections are prominent, is known as mixed convection. Specifically, when a forced convection flow is downward, this flow is called opposing flow. The objectives of this study are to gain a comprehensive understanding of opposing flow mixed convection heat transfer and to establish the prediction methodology by evaluating existing correlations and models. Several heat transfer correlations have been reported related to single-phase opposing flow; however, these correlations are based on experiments conducted in various channel geometries, working fluids, and thermal flow parameter ranges. Because the definition of nondimensional parameters and their validated range confirmed by experiments differ for each correlation reported in previous studies, establishing a guideline for deciding which correlation should be selected based on its range of applicability and extrapolation performance is important. This study reviewed the existing heat transfer correlations for turbulent opposing flow mixed convection and the single-phase heat transfer correlations implemented in the thermal–hydraulic system codes. Furthermore, the authors evaluated the predictive performance of each correlation by comparing them with the experimental data obtained under various experimental conditions. The Jackson and Fewster, Churchill, and Swanson and Catton correlations can accurately predict all the experimental data. The effect of the difference in the thermal boundary conditions, i.e., uniform heat flux and uniform wall temperature, on the turbulent mixed convection heat transfer coefficient is not substantial. The authors confirmed that heat transfer correlations using the hydraulic-equivalent diameter as a characteristic length can be used for predictions regardless of channel-geometry differences. Furthermore, correlations described based on nondimensional dominant parameters can be used for predictions regardless of the differences in working fluids. The authors investigated the extrapolation performance of the mixed convection heat transfer correlations for a wide range of nondimensional parameters and observed that the Jackson and Fewster, Churchill, and Aicher and Martin correlations exhibit excellent extrapolation performance with respect to natural and forced convection flows, indicating that they can be applied beyond the parameter range validated experimentally.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3