Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II) Complex-Influence on Performance of Dye-Sensitized Solar Cells

Author:

Chandrasekharam Malapaka1,Rajkumar Ganugula2,Suresh Thogoti1,Rao Chikkam Srinivasa1,Reddy Paidi Yella2,Yum Jun-Ho3,Nazeeruddin Mohammad Khaja3,Graetzel Michael3

Affiliation:

1. Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India

2. Aisin Cosmos R&D Co. Ltd., Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India

3. Laboratory of Photonics and Interfaces, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland

Abstract

A new high molar extinction coefficient ruthenium(II) bipyridyl complex “cis-Ru(4,-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl)-9H-fluoren-2-yl)-2,-bipyridine)(2,-bipyridine-4,-dicarboxylic acid)(NCS)2, BPFC” has been synthesized and characterized by FT-IR, -NMR, and ESI-MASS spectroscopes. The sensitizer showed molar extinction coefficient of  M−1cm−1, larger as compared to the reference N719, which showed  M−1cm−1. The test cells fabricated using BPFC sensitizer employing high performance volatile electrolyte, (E01) containing 0.05 M I2, 0.1 M LiI, 0.6 M 1,2-dimethyl-3-n-propylimidazolium iodide, 0.5 M 4-tert-butylpyridine in acetonitrile solvent, exhibited solar-to-electric energy conversion efficiency (η) of 4.65% (short-circuit current density () = 11.52 mA/cm2, open-circuit voltage () = 566 mV, fill factor = 0.72) under Air Mass 1.5 sunlight, lower as compared to the reference N719 sensitized solar cell, fabricated under similar conditions, which exhibited η-value of 6.5% ( = 14.3 mA/cm2, = 640 mV, fill factor = 0.71). UV-Vis measurements conducted on TiO2 films showed decreased film absorption ratios for BPFC as compared to those of reference N719. Staining TiO2 electrodes immediately after sonication of dye solutions enhanced film absorption ratios of BPFC relative to those of N719. Time-dependent density functional theory (TD-DFT) calculations show higher oscillation strengths for 4,-bis(9,9-dibutyl-7-(3,6-di-tert-butyl-9H-carbazol-9-yl)-9H-fluoren-2-yl)-2,-bipyridine relative to 2,-bipyridine-4,-dicarboxylic acid and increased spectral response for the corresponding BPFC complex.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonlinear optical response of anthracene as a D-π-A conjugated system: Quantum computation study;SECOND INTERNATIONAL CONFERENCE ON INNOVATIONS IN SOFTWARE ARCHITECTURE AND COMPUTATIONAL SYSTEMS (ISACS 2022);2023

2. A novel ruthenium sensitizer with –OMe substituted phenyl-terpyridine ligand for dye sensitized solar cells;Solar Energy;2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3