Development of Particle Filters for Portable Air Purifiers by Combining Melt-Blown and Polytetrafluoroethylene to Improve Durability and Performance

Author:

Yun Hyunjun1ORCID,Seo Ji Hoon2ORCID,Yang Jinho3ORCID

Affiliation:

1. The AI Convergence Appliance Research Center, Korea Electronics Technology Institute, 226 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Republic of Korea

2. Department of Environmental Health, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

3. Department of Occupational Health and Safety, Semyung University, 65 Semyung-ro, Jecheon, Chungcheongbuk-do 27136, Republic of Korea

Abstract

Improving indoor air quality through the use of air purifiers has become a major focus, with emphasis on developing filters with high efficiency, high holding capacity, and low-pressure drop to improve the clean air delivery rate (CADR) for air purifiers. However, although most studies focused on developing media and evaluating their performance, few studies have reached the employment for a pleated filter. In this study, we newly synthesized flat media and pleated filters by combining polytetrafluoroethylene membrane (PT) and melt-blown (MB) materials (PM) and compared its initial performance to that of other air purifier filters (MB, glass fiber, and PT). Additionally, we analyzed how the performance changed after the particles were loaded. The initial efficiency of the PM filter showed a higher quality factor (QF) than the other filters. Furthermore, when more particles were loaded, the penetration of the PM did not change. These results demonstrate the potential of the PM. However, the CADR and submicron-sized (0.02–0.113 μm) CADR (sCADR) were highest for the MB filter due to the initial pressure drop. Therefore, additional improvements are required to apply the PM in air purifiers. However, the results suggest that the PM can be a new alternative for air purifier filters used in medical centers or facilities with vulnerable populations where a high-efficiency particle air (HEPA) filter must be used.

Funder

Ministry of Environment

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3