Activation of TRPV1 Prevents OxLDL-Induced Lipid Accumulation and TNF-α-Induced Inflammation in Macrophages: Role of Liver X Receptorα

Author:

Zhao Jin-Feng1,Ching Li-Chieh1,Kou Yu Ru1,Lin Shing-Jong2,Wei Jeng3,Shyue Song-Kun4,Lee Tzong-Shyuan1

Affiliation:

1. Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan

2. Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11221, Taiwan

3. Heart Center, Cheng-Hsin General Hospital, Taipei 11221, Taiwan

4. Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan

Abstract

The transient receptor potential vanilloid type 1 (TRPV1) is crucial in the pathogenesis of atherosclerosis; yet its role and underlying mechanism in the formation of macrophage foam cells remain unclear. Here, we show increased TRPV1 expression in the area of foamy macrophages in atherosclerotic aortas of apolipoprotein E-deficient mice. Exposure of mouse bone-marrow-derived macrophages to oxidized low-density lipoprotein (oxLDL) upregulated the expression of TRPV1. In addition, oxLDL activated TRPV1 and elicited calcium (Ca2+) influx, which were abrogated by the pharmacological TRPV1 antagonist capsazepine. Furthermore, oxLDL-induced lipid accumulation in macrophages was ameliorated by TRPV1 agonists but exacerbated by TRPV1 antagonist. Treatment with TRPV1 agonists did not affect the internalization of oxLDL but promoted cholesterol efflux by upregulating the efflux ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Moreover, the upregulation of ABC transporters was mainly through liver X receptorα- (LXRα-) dependent regulation of transcription. Moreover, the TNF-α-induced inflammatory response was alleviated by TRPV1 agonists but aggravated by the TRPV1 antagonist and LXRαsiRNA in macrophages. Our data suggest that LXRαplays a pivotal role in TRPV1-activation-conferred protection against oxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3