Biphasic Equilibrium Dialysis of Poly(N-Isopropyl Acrylamide) Nanogels Synthesized at Decreased Temperatures for Targeted Delivery of Thermosensitive Bioactives

Author:

Musial Witold1ORCID,Michálek Jiri2,Pluta Janusz3,Jaromin Anna4,Pietka-Ottlik Magdalena5,Pradny Martin2

Affiliation:

1. Department of Physical Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland

2. Department of Polymer Gels, Institute of Macromolecular Chemistry of the Academy of Sciences of Czech Republic, Heyrovského Nám. 2, 162 06 Praha, Břevnov, Czech Republic

3. Department of Pharmaceutical Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland

4. Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland

5. Department of Organic Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract

Hydrogel nanoparticles, referred to also as nanogels, are of special interest for medical and pharmaceutical applications. Due to small size in the range below the diameter of the capillaries, they are proposed as drug delivery carriers. The aim of the study was to estimate the influence of composition and reaction conditions during synthesis of poly-N-isopropyl acrylamide cross-linked by polyethylene glycol diacrylate on the purification rates of the polymer. Six types of thermosensitive nanogels were prepared by surfactant-free dispersion polymerization and assessed in terms of process yield, composition, and size at temperatures below and over volume phase temperature. During the diffusion of impurities, in the course of dialysis, assessed by the conductometric method, the remarkable influence of temperature and initiator concentration on the process was revealed. The release rates varied in the range between 9.63 · 10−2and 1.39 · 10−1 h−1in the first stage of the process, whereas in the second stage they were between 2.09 · 10−2and 6.28 · 10−2 h−1. The evaluated time to obtain acceptable purity of the preparation was estimated to be in the range of 18 days. More detailed research should be directed towards the influence of the structure of obtained material on the purification process.

Funder

European Social Fund

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3