On the Performance of the Python Programming Language for Serial and Parallel Scientific Computations

Author:

Cai Xing12,Langtangen Hans Petter12,Moe Halvard1

Affiliation:

1. Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway

2. Department of Informatics, University of Oslo, P.O. Box 1080, Blindern, N-0316 Oslo, Norway

Abstract

This article addresses the performance of scientific applications that use the Python programming language. First, we investigate several techniques for improving the computational efficiency of serial Python codes. Then, we discuss the basic programming techniques in Python for parallelizing serial scientific applications. It is shown that an efficient implementation of the array-related operations is essential for achieving good parallel performance, as for the serial case. Once the array-related operations are efficiently implemented, probably using a mixed-language implementation, good serial and parallel performance become achievable. This is confirmed by a set of numerical experiments. Python is also shown to be well suited for writing high-level parallel programs.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error Detection and Correction Techniques using Python: An Exemplar Approach;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

2. Real-Time Implementation Comparison of Urban Eco-Driving Controls;IEEE Transactions on Control Systems Technology;2024-01

3. Computing Languages for Bioinformatics: Python;Reference Module in Life Sciences;2024

4. A Comparative Analysis Using Machine Learning Approach for Thunderstorm Prediction in Southern Region of Peninsular Malaysia;2023 International Symposium on Lightning Protection (XVII SIPDA);2023-10-09

5. Thunderstorm Prediction Model Using SMOTE Sampling and Machine Learning Approach;2023 12th Asia-Pacific International Conference on Lightning (APL);2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3