A Concise Review of Nanoparticles Utilized Energy Storage and Conservation

Author:

Mahmud Md. Zobair Al1ORCID

Affiliation:

1. Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh

Abstract

Nanoparticles have revolutionized the landscape of energy storage and conservation technologies, exhibiting remarkable potential in enhancing the performance and efficiency of various energy systems. This review explores the versatile applications of nanoparticles in three key domains: battery technologies, supercapacitors, and solar energy conversion. In the realm of battery technologies, nanostructured particles have emerged as crucial catalysts and electrode materials, significantly elevating the energy density, cycling stability, and charge/discharge rates of batteries. By manipulating the surface chemistry and structure of nanoparticles, researchers have achieved breakthroughs in overcoming traditional limitations, paving the way for next-generation high-capacity and long-lasting batteries. The integration of tiny particles in supercapacitors has led to remarkable advancements in energy storage and rapid energy delivery. Nanoparticle-based electrodes have exhibited exceptional surface area, porosity, and conductivity, contributing to enhanced energy and power densities. The synergy of nanomaterials with novel electrolytes has also extended the operational lifespan of supercapacitors, addressing concerns regarding energy loss over cycles. Furthermore, nanoparticles have played a pivotal role in the field of solar energy conversion. In photovoltaics, nanoparticles with tailored optoelectronic properties have enabled improved light absorption, charge separation, and electron transport, ultimately boosting the efficiency of solar cells. Moreover, nanoparticles have been employed as catalysts in photocatalytic systems for solar fuel generation, driving the sustainable production of clean energy carriers. In this concise review, we highlight the recent advancements, challenges, and future prospects of nanoparticles in these critical energy domains. While the transformative impact of nanoparticles is evident, several challenges such as large-scale synthesis, cost-effectiveness, and long-term stability must be systematically addressed to ensure their seamless integration into practical energy applications. As researchers continue to explore novel synthesis techniques and innovative nanoarchitectures, nanoparticles are poised to reshape the energy landscape, accelerating the transition toward a more sustainable and efficient energy future.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3