PSO-ANFIS-Based Energy Management in Hybrid AC/DC Microgrid along with Plugin Electric Vehicle

Author:

Ashokkumar V.1ORCID,Venkatramanan C. B.2ORCID

Affiliation:

1. K.Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli, India

2. Sona College of Technology, Salem, India

Abstract

This study proposes a hybrid AC/DC microgrid with plugin EVs, leveraging PSO-tuned ANFIS for voltage and power control. With the existing control, which faced challenges such as instability and complexity, the proposed approach is aimed at simplifying control through PSO, efficient power sharing, and reduced sample requirements. This innovative method contributes to improved energy management in hybrid microgrids, bridging existing research gaps. This approach streamlines neural transmission in microgrid control, addressing challenges in distributed generation power, load demand, energy storage system SOC, and AC grid power integration. Notably, the proposed PSO-ANFIS simplifies electric vehicle power references using distinct inputs for each mode, trained through PSO. This methodology is tailored for microgrids with varying power profiles, presenting a promising solution for efficient energy management. The proposed EMS was experimentally verified using MATLAB simulations of a small-scale hybrid AC/DC microgrid for every operating mode. The financial dynamics of a microgrid’s power exchange with the main grid are examined through three distinct methodologies: fuzzy logic, ANFIS (adaptive neurofuzzy inference system), and PSO-ANFIS (ANFIS optimized using particle swarm optimization). In case 1, the PSO-ANFIS approach demonstrates its superiority by achieving the lowest grid purchase power cost of 1995.24 Rs/day compared to fuzzy (2243.63 Rs/day) and ANFIS (2150.45 Rs/day), while also yielding the highest revenue from power selling to the microgrid: PSO-ANFIS (668.84 Rs/day) surpassing fuzzy (536.12 Rs/day) and ANFIS (575.35 Rs/day). Similarly, in case 2, PSO-ANFIS proves its efficiency with the lowest net price of 8619.192 Rs/day, showcasing its effectiveness in optimizing financial dynamics. Furthermore, in case 3, the revenue aligns precisely with net prices, indicating the PSO-ANFIS method’s financial advantage, generating the highest revenue of 6544.0224 Rs/day compared to fuzzy (6025.36 Rs/day) and ANFIS (6153.214 Rs/day). These findings underscore the potential utility of the PSO-ANFIS approach in optimizing microgrid operations and enhancing cost-effectiveness across various scenarios.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of control strategies for optimized microgrid operations;IET Renewable Power Generation;2024-07-19

2. Fuzzy Logic-Based Control Algorithm for Smart Microgrid Energy Management;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3