Integrative Nomogram of Computed Tomography Radiomics, Clinical, and Tumor Immune Features for Analysis of Disease-Free Survival of NSCLC Patients with Surgery

Author:

Xiu Dianhui1,Mo Yan2,Liu Chaohui2,Hu Yu3,Wang Yanjing1,Zhao Yiming1,Guo Tiantian1,Cheng Kailiang1,Huang Chencui2,Liu Lin1ORCID,Cheng Min1ORCID

Affiliation:

1. Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China

2. Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China

3. Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130021, China

Abstract

To improve prognosis of cancer patients and determine the integrative value for analysis of disease-free survival prediction, a clinic investigation was performed involving with 146 non-small cell lung cancer (NSCLC) patients (83 men and 73 women; mean age: 60.24 years ± 8.637) with a history of surgery. Their computed tomography (CT) radiomics, clinical records, and tumor immune features were firstly obtained and analyzed in this study. Histology and immunohistochemistry were also performed to establish a multimodal nomogram through the fitting model and cross-validation. Finally, Z test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each model. In all, seven radiomics features were selected to construct the radiomics score model. The clinicopathological and immunological factors model, including T stage, N stage, microvascular invasion, smoking quantity, family history of cancer, and immunophenotyping. The C-index of the comprehensive nomogram model on the training set and test set was 0.8766 and 0.8426 respectively, which was better than that of the clinicopathological-radiomics model (Z test, P =0.041<0.05), radiomics model and clinicopathological model (Z test, P =0.013<0.05 and P =0.0097<0.05). Integrative nomogram based on computed tomography radiomics, clinical and immunophenotyping can be served as effective imaging biomarker to predict DFS of hepatocellular carcinoma after surgical resection.

Funder

Natural Science Foundation of Jilin Province

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3