Affiliation:
1. Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
2. Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China
3. Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
Abstract
To improve prognosis of cancer patients and determine the integrative value for analysis of disease-free survival prediction, a clinic investigation was performed involving with 146 non-small cell lung cancer (NSCLC) patients (83 men and 73 women; mean age: 60.24 years ± 8.637) with a history of surgery. Their computed tomography (CT) radiomics, clinical records, and tumor immune features were firstly obtained and analyzed in this study. Histology and immunohistochemistry were also performed to establish a multimodal nomogram through the fitting model and cross-validation. Finally, Z test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each model. In all, seven radiomics features were selected to construct the radiomics score model. The clinicopathological and immunological factors model, including T stage, N stage, microvascular invasion, smoking quantity, family history of cancer, and immunophenotyping. The C-index of the comprehensive nomogram model on the training set and test set was 0.8766 and 0.8426 respectively, which was better than that of the clinicopathological-radiomics model (Z test, P =0.041<0.05), radiomics model and clinicopathological model (Z test, P =0.013<0.05 and P =0.0097<0.05). Integrative nomogram based on computed tomography radiomics, clinical and immunophenotyping can be served as effective imaging biomarker to predict DFS of hepatocellular carcinoma after surgical resection.
Funder
Natural Science Foundation of Jilin Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献