Revealing the Mineralogical and Petrographic Signs of Fluid-Related Processes in the Kelebia Basement Area (Szeged Basin, S Hungary): A Case Study of Alpine Prograde Metamorphism in a Permo-Triassic Succession

Author:

Varga Andrea1ORCID,Pál-Molnár Elemér1,Raucsik Béla1

Affiliation:

1. Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged H-6722, Hungary

Abstract

The Szeged Basin (S Hungary) occupies a relatively central position within the European Alpine–Carpathian–Dinaride orogenic belt. An ongoing controversy about the tectonic position of the study area indicates that its evolution is still not fully understood; however, several important hydrocarbon occurrences are known in the fractured basement reservoirs. The main aim of this contribution is to investigate the petrographic features and possible Alpine metamorphic conditions of volcanic/volcanoclastic and siliciclastic rocks from the Kelebia basement area. Due to the outcrop conditions and poor exposure, study samples are obtained from cores and core chips resulting from oil exploration. Based on an evaluation of petrographic (including also cathodoluminescence analysis) and microstructural features, joined with mineralogical and metamorphic data such as “illite crystallinity” and K-white mica crystallite size obtained by X-ray powder diffractometry (XRPD), a very low- to low-grade (ca. 300°C) Alpine metamorphic imprint of this portion of the basement can be proposed. Several deformation characteristics (deformation lamellae in quartz, deformation twins in dolomite, fragmented porphyroclasts, and strain shadows) were recognized in the studied samples, showing a weakly to moderately developed disjunctive foliation in the Permian rocks, as well as quartz veinlets, microcracks, and fluid inclusion planes in the Lower Triassic sandstones. Most likely, one of the Cretaceous orogenic events, namely, the “Turonian” phase (Early–Late Cretaceous nappe stacking), resulted in the prograde greenschist facies metamorphism in the study area, instead of the burial depth. We propose that the Permo-Triassic cover succession was also affected by shearing episodes accompanied by fluid migrations along the contact zone between the tectonic units. The scientific approach and dataset provided here are examples of how the application of XRPD parameters of phyllosilicates and micropetrographic observations can help to understand the evolution of an orogen and improve knowledge about the basement structure.

Funder

National Research, Development, and Innovation Fund

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3