Muscle-Based Pharmacokinetic Modeling of Marrow Perfusion for Osteoporotic Bone in Females

Author:

Ma Heather Ting1,Griffth James F.2,Leung Ping-Chung3

Affiliation:

1. Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Room 205C, C Building, HIT Campus, Shenzhen University Town, Xili, Nanshan District, Shenzhen 518055, China

2. Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong

3. Jockey Club Centre for Osteoporosis Care and Control, Public Health School, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract

The pharmacokinetic model has been widely used in tissue perfusion analysis, such as bone marrow perfusion. In the modeling process, the arterial input function is important to guarantee the reliability of the fitting result. However, the arterial input function is variable and hard to control, which makes it difficult to compare results across different studies. The purpose of this study was to establish a muscle-based pharmacokinetic model for bone marrow perfusion without using arterial input function. Erector spinae muscle around the vertebral body was selected as the reference region. The study was carried out in elderly females with different bone mineral densities (normal, osteopenia, and osteoporosis). Quantitative parameters were extracted from the pharmacokinetic model. ParameterKtrans,BM(contrast agent extravasation rate constants for blood perfusion of the bone marrow) showed a significant reduction in subjects with lower bone mineral density, which is consistent with previous studies. However, muscle perfusion parameters remained unchanged among different groups. The results indicated that the muscle-based model was stable for bone marrow perfusion modeling. Additionally, nonsignificant change in muscle parameters indicated that the diminished perfusion is only a local rather than a systematic change in the bone marrow for osteoporosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3