The Modelling of Hand, Foot, and Mouth Disease in Contaminated Environments in Bangkok, Thailand

Author:

Chadsuthi Sudarat1ORCID,Wichapeng Surapa2

Affiliation:

1. Department of Physics, Research Center for Academic Excellence in Applied Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

2. Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Abstract

Hand, foot, and mouth disease (HFMD) has spread widely in a continuing endemic in Thailand. There are no specific vaccines or antiviral treatments available that specifically target HFMD. Indirect transmission via free-living viruses from the environment may influence HFMD infections because the virus can survive for long periods in the environment. In this study, a new mathematical model is proposed to investigate the effect of indirect transmission from contaminated environments and the impact of asymptomatic individuals. By fitting our model to reported data on hospitalized individuals of HFMD endemic in Bangkok, Thailand, 2016, the basic reproduction number was estimated as 1.441, which suggests that the disease will remain under current conditions. Numerical simulations show that the direct transmission from asymptomatic individuals and indirect transmission via free-living viruses are important factors which contribute to new HFMD infections. Sensitivity analysis indicates that the basic reproduction number is sensitive to the transmission rate of asymptomatic and symptomatic subgroups and indirect transmission. Our findings suggest that cleaning the environment frequently and healthcare precautions which include the reduction of direct transmission rates should be promoted as effective control strategies for preventing the HFMD spread.

Funder

Naresuan University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3