A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling

Author:

Acharya Saket1ORCID,Rawat Umashankar1ORCID,Bhatnagar Roheet1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India

Abstract

With the extensive use of Android applications, malware growth has been increasing drastically. The high popularity of Android devices has motivated malware developers to attack these devices. In recent times, most researchers and scholars have used deep learning approaches to detect Android malware. Although deep learning techniques provide good accuracy and efficiency, they require high computational cost to train huge and complex data sets. Hence, there is a need for an approach that can efficiently detect novel malware variants with a minimum computational cost. This paper proposes a novel framework for detecting and clustering Android malware using the transfer learning and the topic modelling approach. The transfer learning approach minimizes new training data by transferring well-known features from a qualified source model to a destination model, and hence, a high amount of computational power is not required. In addition, the proposed framework clusters the detected malware variants into their corresponding families with the help of Latent Dirichlet Allocation and hierarchical clustering techniques. For performance assessment, we performed several experiments with more than 50K Android application samples. In addition, we compared the performance of our framework with that of similar existing traditional machine learning and deep learning models. The proposed framework provides better accuracy of 98.3% during the classification stage by using the transfer learning approach as compared to other state-of-the-art Android malware detection techniques. The high precision value of 98.7% is obtained during the clustering stage while grouping the obtained malicious applications into their corresponding malware families.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3