Amplification of the Capacitance Containing Nematic Liquid Crystal Embedded with Metal Nanoparticles

Author:

Kobayashi Shunsuke1,Sakai Yoshio2,Miyama Tomohiro1,Nishida Naoto3,Toshima Naoki3

Affiliation:

1. Liquid Crystal Institute and Department of Electrical Engineering, Tokyo University of Science, Yamaguchi, Japan

2. Department of Engineering and Science, Tokyo University of Science, Yamaguchi, Japan

3. Advanced Material Institute and Department of Applied Chemistry, Tokyo University of Science, Yamaguchi 1-1-1, Daigaku-dori, Sanyo-Onoda, Yamaguchi 756-0884, Japan

Abstract

Herein, we report the dielectric properties of liquid crystal cells embedded with the nanoparticles of Pd, where each of which is covered with a diffusion cloud. It is shown that an amplification of the capacitors with these media occurs with the gain,Ac=12.5,when the concentration of nanoparticles is 0.3 wt% and in the frequency region below the dielectric relaxation frequency, 158.5 Hz. This phenomenon is explained by an equivalent circuit model together with a compatible explanation of the dielectric strength and the relaxation time. It is claimed that the occurrence of the capacitance amplification may be attributed to a special nature of the oscillating extra charges, which appear in the region between the host medium and inclusion, and produces an effective negative dielectric constant of the special nanoparticles. This explanation was made by formulating an independent auxiliary equivalent circuit equation that enables to determine the numerical condition of the production of the negativity in the dielectric constant of inclusions (nanoparticles), and, thus, we succeeded in getting the numerical value of this dielectric constant and that of the gain of the capacitance amplification.

Funder

METI Regional Revitalization Consortium R&D Project

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3