Identification of mRNAs Related to Tibial Cartilage Development of Yorkshire Piglets

Author:

Feng Shuaifei1ORCID,Du Xiaoyong2,Wang Chao1ORCID,Ye Dengdeng1,Ma Guanjun3,Zhao Shuhong1,Wang Haiyan2ORCID,Liu Xiangdong13ORCID

Affiliation:

1. Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China

3. Key Lab of Swine Healthy Breeding of Ministry of Agriculture and Rural Affairs, Guigang 537100, China

Abstract

Cartilage dysplasia is one of the important reasons for the weakness of pig limbs and hooves. Porcine rickets with weak limbs and hooves bring huge economic losses to the pig industry. However, research on the development of pig cartilage is lacking. This study investigated the key genes and molecular mechanisms involved in cartilage development via an RNA-seq technique. Samples of proximal tibia cartilage were collected from three normal piglets with 1 day, 14 days, and 28 days of age, respectively, and then these samples were divided into two comparison groups (1-day vs. 14-day group, 14-day vs. 28-day group). Through the transcriptome analysis, 108 differentially expressed genes (DEGs), such as FORL2, were obtained from 1-day vs. 14-day comparison group, and 3602 DEGs were obtained from 14-day vs. 28-day comparison group, including SOX9, BMP6, and MMP13. The gene ontology (GO) functional and KEGG pathway enrichment revealed that many functions of DEGs were related to bone development. The pathways of DEGs from Day 1 vs. Day 14 were mainly enriched in mineral absorption, but the DEGs of Day 14 vs. Day 28 were enriched in osteoclast differentiation. Then, the expression patterns of six candidate genes were verified via qPCR. In conclusion, candidate genes affecting cartilage development in Yorkshire pigs were obtained by transcriptome analysis, and the clues showed that Day 14 to Day 28 is a more active and extensive period in cartilage developments, which played a key role in revealing the molecular mechanism of pig cartilage development basis, also compensating for vacancies in cartilage research.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3