Blockade of RBP-J-Mediated Notch Signaling Pathway Exacerbates Cardiac Remodeling after Infarction by Increasing Apoptosis in Mice

Author:

He Yanru12ORCID,Pang Si12,Huang Jia12,Zhu Kongbo1,Tong Jiayi1,Tang Yaoliang3ORCID,Ma Genshan1ORCID,Chen Lijuan1ORCID

Affiliation:

1. Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China

2. Medical School of Southeast University, Nanjing, China

3. Department of Cardiovascular Medicine, Georgia Regents University, USA

Abstract

Background. Ischemic heart disease (IHD) is the major cause of death in patients with cardiovascular disease. Cardiac remodeling is a common pathological change following myocardial infarction (MI), and cardiomyocyte apoptosis plays a key role in this change. Transcription factor recombination signal-binding protein-J (RBP-J)-mediated Notch signaling pathway has been implicated in several inherited cardiovascular diseases, including aortic valve diseases, but whether the RBP-J-mediated Notch signaling pathway plays a role in cardiomyocyte apoptosis after MI is unclear. Method. We crossed RBP-Jfl/fl mice and Myh6-Cre/Esr1 transgenic mice to delete RBP-J in vivo and to partly inhibit the canonical Notch signaling pathway. MI was induced in mice by permanent ligation of the left anterior descending coronary artery followed by the knockout of RBP-J. Cardiac function and morphology were assessed by echocardiography and histological analysis 4 weeks after infarction. In addition, the expression and regulation of apoptosis-related molecules were examined by real time PCR and western blot. Results. RBP-J knockout decreased the survival rate and deteriorated post-MI remodeling and function in mice, and this effect was associated with increased cardiomyocyte apoptosis. The potential mechanisms might be related to the downregulated expression of bcl-2, upregulated expression of bax, and cleaved-caspase 3 to exacerbate cardiomyocyte apoptosis. Conclusion. These findings show that the RBP-J-mediated Notch signaling pathway in cardiomyocytes limits ventricular remodeling and improves cardiac function after MI. The RBP-J-mediated Notch signaling pathway has a protective role in cardiomyocyte apoptosis following cardiac injury.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Notch signaling molecules;Cellular, Molecular, and Environmental Contribution in Cardiac Remodeling;2024

2. New Insights into the Reparative Angiogenesis after Myocardial Infarction;International Journal of Molecular Sciences;2023-08-01

3. Punicalagin attenuates ventricular remodeling after acute myocardial infarction via regulating the NLRP3/caspase-1 pathway;Pharmaceutical Biology;2023-06-25

4. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy;Journal of Molecular and Cellular Cardiology;2023-04

5. The Role of the Notch Signaling Pathway in Recovery of Cardiac Function after Myocardial Infarction;International Journal of Molecular Sciences;2022-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3