Assessment of RELAP/SCDAPSIM/MOD3.4 Prediction Capability with Severe Fuel Damage Scoping Test

Author:

Rattanadecho Noppawan1ORCID,Rassame Somboon1ORCID,Silva Kampanart2,Allison Chris3,Hohorst Judith3ORCID

Affiliation:

1. Department of Nuclear Engineering, Chulalongkorn University, 254 Phayathai Rd, Pathumwan, Bangkok 10330, Thailand

2. Thailand Institute of Nuclear Technology (Public Organization), 9/9 Moo 7, Saimoon, Ongkharak, Nakorn Nayok 26120, Thailand

3. Innovation Systems Software, 2585 Briar Creek Ln., Ammon, Idaho 83406, USA

Abstract

The Power Burst Facility (PBF) was designed to provide experimental data to determine the thresholds for failure during accident conditions. Thus, the PBF benchmark using severe accidental analysis codes is essential to designing reactor for current directions. This assessment verified and validated that the RELAP/SCDAPSIM/MOD3.4 code can be used to assess the Severe Fuel Damage Scoping Test (SFD-ST) performed in the PBF facility. This study compares the cladding temperatures and hydrogen production results calculated by the RELAP/SCDAPSIM/MOD3.4 code with experimental data and calculated results from the SCDAP/RELAP5/MOD3.2 and SCDAP/RELAP5/MOD3.3 codes. The interested parameters are cladding temperature and hydrogen production since the cladding temperature affects hydrogen production and consequently influences the accident scenario. The calculated cladding temperatures and hydrogen production results from the RELAP/SCDAPSIM/MOD3.4 code are in a good agreement with the experimental data and are generally more reasonable than the calculated results from the SCDAP/RELAP5/MOD3.2 and SCDAP/RELAP5/MOD3.3 codes. There are some discrepancies in the cladding temperature and hydrogen production results but they are expected.

Funder

Chulalongkorn University

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3