Identification of Key Genes Related to the Obesity Patients with Osteoarthritis Based on Weighted Gene Coexpression Network Analysis (WGCNA)

Author:

Zhou Quan1,Sun Huan2,Jia Jin2,Jiang Jun-liang3,Li Tao3,Wu Zhao-xiang3,Chen Zhong3ORCID

Affiliation:

1. Department of Orthopedics, The First People’s Hospital of Dali City, Dali, Yunnan 671000, China

2. Department of the Basic Medicine, The Kunming Medical University, Kunming, Yunnan 650500, China

3. Department of Orthopedics and Trauma, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province, The Eye Hospital of Yunnan Province), Kunming, Yunnan 650000, China

Abstract

Background. Increasing evidence has suggested that obesity affects the occurrence and progression of osteoarthritis (OA). However, the underlying molecular mechanism that obesity affects the course of OA is not fully understood and remains to be studied. Methods. The gene expression profiles of the GSE117999 and GSE98460 datasets were derived from the Gene Expression Omnibus (GEO) database. Firstly, we explored the correlation between obesity and OA using chi-square test. Next, weighted gene coexpression network analysis (WGCNA) was executed to identify obesity patients with OA- (obesity OA-) related genes in the GSE117999 dataset by “WGCNA” package. Moreover, differential expression analysis was performed to select the hub genes by “limma” package. Furthermore, ingenuity pathway analysis (IPA) and functional enrichment analysis (“clusterProfiler” package) were conducted to investigate the functions of genes. Finally, the regulatory networks of hub genes and protein-protein interaction (PPI) network were created by the Cytoscape 3.5.1 software and STRING. Results. A total of 15 differentially expressed obesity OA-related genes, including 9 lncRNAs and 6 protein coding genes, were detected by overlapping 66 differentially expressed genes (DEGs) between normal BMI samples and obesity OA samples and 451 obesity OA-related genes. Moreover, CCR10, LENG8, QRFPR, UHRF1BP1, and HLA-DRB4 were identified as hub genes. IPA results indicated that the hub genes were noticeably enriched in antimicrobial response, inflammatory response, and humoral immune response. PPI network showed that CCR10 interacted more with other proteins. Gene set enrichment analysis (GSEA) indicated that the hub genes were related to protein translation, cancer, chromatin modification, antigen processing, and presentation. Conclusion. Our results further demonstrated the role of obesity in OA and might provide new targets for the treatment of obesity OA.

Funder

Kunming Medical University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3