Research on Electrostatic Monitoring of Tribo-Contacts with Dynamic Adaptive Fusion Method

Author:

Liu Ruochen12ORCID,Wang Han23ORCID,Zhang Jinwu1ORCID,Gu Shuangshuang1ORCID,Sun Jianzhong3ORCID

Affiliation:

1. School of Automobile and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, China

2. Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA

3. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Electrostatic monitoring is a unique and rapid developing technique applied in the prognostics and health management of the tribological system based on electrostatic charging and sensing phenomenon. It has considerable advantages in condition monitoring of tribo-contacts with high sensitivity and resolution. Unfortunately, the monitoring result can be affected due to the switch of operating conditions that reduces its accuracy. This paper presents a dynamic adaptive fusion approach, moving window local outlier factor based on electrostatic features to overcome the influence. Life cycle experiments of rolling bearings and railcar gearbox were carried out on an electrostatic monitoring platform. The MWLOF method was used to extract and analyze the experimental data, combined with the Pauta criterion to judge wear faults quantitatively, and compare with other feature extraction results. It is verified that the proposed method can overcome the influence of changes in working conditions on the monitoring results, improve the monitoring sensitivity, and provide an accurate reference for friction and wear faults.

Funder

University of Maryland

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3