Three-Dimensional Discrete Element Analysis of Crushing Characteristics of Calcareous Sand Particles

Author:

Lu Zucheng1ORCID,Hou Heying1ORCID,Jiang Pengming2,Wang Qing1,Li Tianxiang1,Pan Zhuojie34

Affiliation:

1. Department of Civil and Architecture Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China

2. Department of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China

3. Department of Geotechnical Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, China

4. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210024, China

Abstract

Particle crushing is an important factor affecting the mechanical characteristics of calcareous sand, but at present, most of relative studying methods rely on physical experiments. In order to study the influence of particle crushing characteristics on the micromechanics of calcareous sand, the 14-fragment replacement method satisfying the Apollonian distribution is used to simulate the calcareous sand particles, and the fragment replacement method (FRM) is used to simulate the particle crushing. The three-dimensional discrete element model of calcareous sand particle crushing is established, and the development of relative crushing rate and the evolution laws of coordination number, porosity, and sliding contact ratio in triaxial consolidated drained shear test are analyzed. The results show that the three-dimensional model considering particle breakage can well reflect the micromechanical properties of the internal structure of the sample. The micromechanical response with and without particle crushing is quite different, which can be well reflected by the numerical test under high confining pressure. In addition, the modified relative crushing rate proposed by Einav based on the research of Hardin can better describe the relative crushing rate of calcareous sand under wide gradation and can provide a reference for the study of particle crushing characteristics of laboratory test of calcareous sand under wide gradation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3