Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions

Author:

Bharati Subrato1ORCID,Podder Prajoy1

Affiliation:

1. Institute of Information and Communication Technology (IICT), Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh

Abstract

The integration of the Internet of Things (IoT) connects a number of intelligent devices with minimum human interference that can interact with one another. IoT is rapidly emerging in the areas of computer science. However, new security problems are posed by the cross-cutting design of the multidisciplinary elements and IoT systems involved in deploying such schemes. Ineffective is the implementation of security protocols, i.e., authentication, encryption, application security, and access network for IoT systems and their essential weaknesses in security. Current security approaches can also be improved to protect the IoT environment effectively. In recent years, deep learning (DL)/machine learning (ML) has progressed significantly in various critical implementations. Therefore, DL/ML methods are essential to turn IoT system protection from simply enabling safe contact between IoT systems to intelligence systems in security. This review aims to include an extensive analysis of ML systems and state-of-the-art developments in DL methods to improve enhanced IoT device protection methods. On the other hand, various new insights in machine and deep learning for IoT securities illustrate how it could help future research. IoT protection risks relating to emerging or essential threats are identified, as well as future IoT device attacks and possible threats associated with each surface. We then carefully analyze DL and ML IoT protection approaches and present each approach’s benefits, possibilities, and weaknesses. This review discusses a number of potential challenges and limitations. The future works, recommendations, and suggestions of DL/ML in IoT security are also included.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3