Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction

Author:

Huang Qing1,Zhang Chao2,Tang Shaoyong1,Wu Xiaoyan3,Peng Xiong1ORCID

Affiliation:

1. Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China

2. Heart Function Testing Center of Cardiovascular Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China

3. Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China

Abstract

Objective. Salvianolic acid A, a natural polyphenolic ingredient extracted from traditional Chinese medicine, possesses an excellent pharmacological activity against cardiovascular diseases. Herein, therapeutic mechanisms of salvianolic acid A in myocardial infarction were explored through systematic and comprehensive network pharmacology analyses. Methods. The chemical structure of salvianolic acid A was retrieved from PubChem database. Targets of salvianolic acid A were estimated through SwissTargetPrediction, HERB, and TargetNet databases. Additionally, by GeneCards, OMIM, DisGeNET, and TTD online tools, myocardial infarction-relevant targets were predicted. Following intersection, therapeutic targets were determined. The interaction of their products was evaluated with STRING database, and hub therapeutic targets were selected. GO and KEGG enrichment analyses of therapeutic targets were then implemented. H9C2 cells were exposed to oxygen‐glucose deprivation/reoxygenation (OGD/R) to mimic myocardial infarction and administrated with salvianolic acid A. Cellular proliferation was assayed via CCK‐8 assay, and hub therapeutic targets were verified with RT-qPCR. Results. In total, 120 therapeutic targets of salvianolic acid A in myocardial infarction were identified. There were close interactions between their products. Ten hub therapeutic targets were determined, covering SRC, CTNNB1, PIK3CA, AKT1, RELA, EGFR, FYN, ITGB1, MAPK8, and NFKB1. Therapeutic targets were significantly correlated to myocardial infarction-relevant pathways, especially PI3K-Akt signaling pathway. Salvianolic acid A administration remarkably ameliorated the viability of OGD/R-induced H9C2 cells, and altered the expression of hub therapeutic targets. Conclusion. Our work uncovers therapeutic mechanisms of salvianolic acid A for the treatment of myocardial infarction, providing a new insight into further research on salvianolic acid A.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3