Study on Mesoscale Damage Evolution Characteristics of Irregular Sandstone Particles Based on Digital Images and Fractal Theory

Author:

Zheng Lujing12,Zheng Lulin1ORCID,Zuo Yujun1,Liu Hao134,Chen Bin1,Wu Zhonghu5,Sun Wenjibin1,Wang Yingle1

Affiliation:

1. College of Mining, Guizhou University, Guiyang 550025, China

2. Guizhou Jinfeng Mining Limited, Southwest of Guizhou, Guizhou 562204, China

3. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China

4. Department of Civil and Environmental Engineering, Technical University of Catalonia (UPC), 08034 Barcelona, Spain

5. College of Civil Engineering, Guizhou University, Guiyang 550025, China

Abstract

To study the mesoscale damage evolution law of irregular sandstone particles, based on RFPA2D and digital image processing technology, a real mesostructure numerical model of irregular sandstone particles is established to simulate the breakage process of particles, the effects of loading conditions and mesoscale heterogeneity on irregular sandstone particle damage are studied, and the calculation method of fractal dimension of irregular rock particles mesoscale fracture is proposed. The results show that the fracture damage degree (ω) and fractal dimension (D) maximum values of the constrained particles are 0.733 and 1.466, respectively, and the unconstrained particles are 0.577 and 1.153, respectively. The final failure mode of constrained particles is more complicated than unconstrained particles, the damage is more serious, and the fracture is more complete. Thus, the larger values of D yield a more complicated final failure mode of the particles. Consequently, with the larger ω, the final damage is more serious, and the breakage effect is comparatively better. The study is of great significance for exploring the laws of rock particle breakage and energy consumption, rock breakage mechanism, and searching for efficient and energy-saving rock-breaking methods.

Funder

Science and Technology Support Project of Guizhou Province, China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3