Deep Learning-Based Computed Tomography Imaging to Diagnose the Lung Nodule and Treatment Effect of Radiofrequency Ablation

Author:

Guo Xixi1ORCID,Li Yuze2ORCID,Yang Chunjie3ORCID,Hu Yanjiang3ORCID,Zhou Yun3ORCID,Wang Zhenhua1ORCID,Zhang Liguo1ORCID,Hu Hongjun1ORCID,Wu Yuemin3ORCID

Affiliation:

1. Department 2 of Thoracic Oncology, Xinxiang Central Hospital, Xinxiang 453000, Henan, China

2. Disinfection and Supply Center, Liyang People’s Hospital, Liyang 213300, Jiangsu, China

3. Department of Thoracic Surgery, Liyang People’s Hospital, Liyang 213300, Jiangsu, China

Abstract

This study aimed to detect and diagnose the lung nodules as early as possible to effectively treat them, thereby reducing the burden on the medical system and patients. A lung computed tomography (CT) image segmentation algorithm was constructed based on the deep learning convolutional neural network (CNN). The clinical data of 69 patients with lung nodules diagnosed by needle biopsy and pathological comprehensive diagnosis at hospital were collected for specific analysis. The CT image segmentation algorithm was used to distinguish the nature and volume of lung nodules and compared with other computer aided design (CAD) software (Philips ISP). 69 patients with lung nodules were treated by radiofrequency ablation (RFA). The results showed that the diagnostic sensitivity of the CT image segmentation algorithm based on the CNN was obviously higher than that of the Philips ISP for solid nodules <5 mm (63 cases vs. 33 cases) ( P < 0.05 ); it was the same result for the subsolid nodule <5 mm (33 case vs. 5 cases) ( P < 0.05 ) that was slightly higher for solid and subsolid nodules with a diameter of 5–10 mm (37 cases vs. 28 cases) ( P < 0.05 ). In addition, the CNN algorithm can reach all detection for calcified nodules and pleural nodules (7 cases; 5 cases), and the diagnostic sensitivities were much better than those of Philips ISP (2 cases; 3 cases) ( P < 0.05 ). Patients with pulmonary nodules treated by RFA were in good postoperative condition, with a half-year survival rate of 100% and a one-year survival rate of 72.4%. Therefore, it could be concluded that the CT image segmentation algorithm based on the CNN could effectively detect and diagnose the lung nodules early, and the RFA could effectively treat the lung nodules.

Funder

Jiangsu University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3