Affiliation:
1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
The properties of fully reconstructed jet are investigated in p + p and Pb + Pb collisions atsNN= 2.76 TeV within a multiphase transport (AMPT) model with both partonic scatterings and hadronic rescatterings. A large transverse momentum (pT) asymmetry of dijet or photon-jet arises from the strong interactions between jet and partonic matter. Theξ-dependent jet fragmentation function in Pb + Pb collisions is decomposed into two contributions from different jet hadronization mechanisms, that is, fragmentation versus coalescence. The medium modification of differential jet shape displays that the jet energy is redistributed towards a larger radius owing to jet-medium interactions in heavy-ion collisions. Jet triangular azimuthal anisotropy coefficient,v3jet, which shows a smaller magnitude than the elliptic coefficientv2jet, decreases more quickly with increasing jetpT, which can be attributed to a path-length effect of jet energy loss. All of these properties of full jet are consistent with the jet energy loss mechanism in a stronglyinteracting partonic matter in high-energy heavy-ion collisions.
Funder
National Natural Science Foundation of China
Subject
Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献