Efficient Segmentation of Lymphoblast in Acute Lymphocytic Leukemia

Author:

Ur Rahman Syed Ijaz1ORCID,Jadoon Misbah2ORCID,Ali Sikandar34ORCID,Khattak Hizbullah5ORCID,Huang Jiwei34ORCID

Affiliation:

1. Department of Computer Science, Islamia College University Peshawar, Peshawar, Pakistan

2. Department of Computer Science, Women University Swabi, Khyber Pakhtunkhwa, Swabi 23430, Pakistan

3. Department of Computer Science and Technology, China University of Petroleum, Beijing 102249, China

4. Beijing Key Lab of Petroleum Data Mining, China University of Petroleum, Beijing 102249, China

5. Department of Information Technology, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan

Abstract

Microscopic examination of peripheral blood smears and bone marrow is the preliminary step for the diagnosis of several life-threatening diseases. Acute lymphocytic leukemia (ALL) is the most common disease in children that also needs an early diagnosis for on-time treatment as it spreads rapidly in the blood and forms immature lymphocytes. This might cause death in some weeks if left untreated. Manual methods in clinical laboratory being applied for the diagnosis of these diseases are inefficient and expensive, and the results are less accurate. A computer-aided system is the need of the day in which the most important step is segmenting the region of interest in blood or bone marrow for the detection and cure of the diseases which is the most challenging task. This study aims to propose a simple threshold-based segmentation technique by processing the S component of the HSV color space to segment the lymphoblasts in the bone marrow images of ALL patients. The technique was applied to 230 RGB bone marrow images having all the three types of ALL, i.e., L1, L2, and L3 resulted in the overall accuracy of 96.8%.

Funder

National Key Research and Development Plan

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3