Computation of Gram Matrix and Its Partial Derivative Using Precise Integration Method for Linear Time-Invariant Systems

Author:

Li Sulan1,Ren Yuanhao1,Bao Hong1ORCID,Zhang Wei2

Affiliation:

1. Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, 2 Taibai Road, Xi’an 710071, China

2. Wuhan Second Ship Design and Research Institute, 450 Zhongshan Road, Wuhan 430064, China

Abstract

Gram matrix is an important tool in system analysis and design as it provides a description of the input-output behavior for system; its partial derivative matrix is often required in some numerical algorithms. It is essential to study computation of these matrices. Analytical methods only work in some special circumstances; for example, the system matrix is diagonal matrix or Jordan matrix. In most cases, numerical integration method is needed, but there are two problems when compute using traditional numerical integration method. One is low accuracy: as high accuracy requires extremely small integration step, it will result in large amount of computation; and another is stability and stiffness issues caused by the dependence on the property of system matrix. In order to overcome these problems, this paper proposes an efficient numerical method based on the key idea of precise integration method (PIM) for the Gram matrix and its partial derivative of linear time-invariant systems. Since matrix inverse operation is not required in this method, it can be used with high precision no matter the system is normal or singular. The specific calculation algorithm and block diagram are also given. Finally, numerical examples are given to demonstrate the correctness and validity of this method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3