Numerical Simulation Analysis of the Jacking Force and Its Influencing Factors during the Vertical Tunneling Process

Author:

Wei Xinjiang1234ORCID,Wang Xiao123ORCID,Wei Gang123ORCID,Lu Liangliang1ORCID

Affiliation:

1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China

2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, China

3. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou 310015, China

4. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Abstract

The development of underground space is fast because of the lack of space. To build shafts in underwater tunnels, the vertical tunneling method (VTM) was invented in 1974 in China, which can act as a freshwater intake or sewage outlet. During the operation of the VTM, the jacking force is one of the essential factors that draw attention. This paper conducts a numerical study of the jacking force and its influencing factors during the vertical tunneling process. First, based on the finite element software ABAQUS, a numerical model of the vertical tunneling process is established according to the VTM project in Beihai, China. Second, in accordance with the Latin hypercube sampling method and the multivariate significance analysis, the mechanical parameters are determined or back-analyzed. Then, the calculated jacking force of the numerical model is compared with the measured jacking force. It turns out that the changing trend of the jacking force in the numerical model and the measured jacking force is relatively consistent. Finally, the influencing factors of the jacking force, such as elastic modulus and the angle of internal friction, are analyzed based on the numerical model. The results show that the elastic modulus and the angle of internal friction of soil are the main influencing factors of the jacking force. The secondary factors are Poisson’s ratio, static earth pressure coefficient, unit weight, and cohesion.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3