Accurate Recognition Method of Human Body Movement Blurred Image Gait Features Using Graph Neural Network

Author:

Yu Yang1ORCID

Affiliation:

1. Department of Physical Education, Jilin Communications Polytechnic, Changchun 130000, Jilin, China

Abstract

In view of the problems of low precision, poor quality, and long time of gait feature recognition due to the influence of human body movement environment on the recognition process of the current gait feature recognition method of human body movement blurred image, a new method of gait feature recognition based on graph neural network (GNN) method is proposed. The gait features of human movement blurred images were extracted, and the fusion clustering recognition of the GNN algorithm was used to locate the gait features of human movement blurred images. The gait features of human body movement blurred images were located by the GNN method. According to the contour feature point info of the human body movement blurred image, the standard deviation of gait feature location of the human body movement blurred image was calculated, the gait feature of the blurred image of human body movement was reconstructed, and the gait recognition of the human body movement blurred image was achieved. The results show that the extraction of human movement is good, with high positioning confidence, good recognition quality, average recognition accuracy of 92%, and greatly shortened recognition time.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3