Data-Driven versus Köppen–Geiger Systems of Climate Classification

Author:

Lasantha Vajira1ORCID,Oki Taikan1ORCID,Tokuda Daisuke1ORCID

Affiliation:

1. Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Abstract

Climate zone classification promotes our understanding of the climate and provides a framework for analyzing a range of environmental and socioeconomic data and phenomena. The Köppen–Geiger classification system is the most widely used climate classification scheme. In this study, we compared the climate zones objectively defined using data-driven methods with Köppen–Geiger rule-based classification. Cluster analysis was used to objectively delineate the world’s climatic regions. We applied three clustering algorithms—k-means, ISODATA, and unsupervised random forest classification—to a dataset comprising 10 climatic variables and elevation; we then compared the obtained results with those from the Köppen–Geiger classification system. Results from both the systems were similar for some climatic regions, especially extreme temperature ones such as the tropics, deserts, and polar regions. Data-driven classification identified novel climatic regions that the Köppen–Geiger classification could not. Refinements to the Köppen–Geiger classification, such as precipitation-based subdivisions to existing Köppen–Geiger climate classes like tropical rainforest (Af) and warm summer continental (Dfb), have been suggested based on clustering results. Climatic regions objectively defined by data-driven methods can further the current understanding of climate divisions. On the other hand, rule-based systems, such as the Köppen–Geiger classification, have an advantage in characterizing individual climates. In conclusion, these two approaches can complement each other to form a more objective climate classification system, wherein finer details can be provided by data-driven classification and supported by the intuitive structure of rule-based classification.

Funder

Science and Technology Research Partnership for Sustainable Development

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3