miR-486-5p Restrains Extracellular Matrix Production and Oxidative Damage in Human Trabecular Meshwork Cells by Targeting TGF-β/SMAD2 Pathway

Author:

Xu Le1ORCID,Zhang Yiming2ORCID,Long Hua1ORCID,Zhou Bo1ORCID,Jiang Haibo1ORCID

Affiliation:

1. Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China

2. Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, Hubei, China

Abstract

Background. Glaucoma is characterized by elevated intraocular pressure caused by aqueous outflow dysfunction. Trabecular meshwork plays a key role in controlling intraocular pressure by modulating aqueous outflow. This study investigated the protective effects of miR-486-5p in H2O2-stimulated human trabecular meshwork cells (TMCs). Methods. TMCs were disposed with 300 μM H2O2 to establish oxidative damage models in vitro. miR-486-5p mimics and its controls were transfected into TMCs, and cell apoptosis and extracellular matrix production (ECM) genes were measured by flow cytometry, western blotting, and immunofluorescence staining. Activities of superoxide dismutase (SOD) and malondialdehyde (MDA) were also assayed. Online tools and luciferase reporter assays were used to uncover the relationship between miR-486-5p and the TGF-β/SMAD2 pathway. Results. We found that H2O2-induced oxidative damage in TMCs and miR-486-5p was downregulated in H2O2-stimulated TMCs. Overexpression of miR-486-5p mitigated H2O2-induced oxidative damage by inhibiting apoptosis, reducing cleaved caspase-3/9 expression, reducing MDA levels, and increasing SOD levels as well as downregulating ECM genes. SMAD2 was demonstrated to be targeted by miR-486-5p, and miR-486-5p inhibited TGF-β/SMAD2 signaling in H2O2-stimulated TMCs. Additionally, SMAD2 was upregulated by H2O2, and SMAD2 upregulation abrogated the protective effects of miR-486-5p against H2O2-induced injury. Conclusion. miR-486-5p restrains H2O2-induced oxidative damage in TMCs by targeting the TGF-β/SMAD2 pathway.

Publisher

Hindawi Limited

Subject

Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3