Photothermal Effect of Superparamagnetic Fe3O4 Nanoparticles Irradiated by Near-Infrared Laser

Author:

Fu Shawei1ORCID,Man Yuchun1,Jia Fuquan1

Affiliation:

1. Inorganic Synthesis and Chemical Analysis Institute, Jilin Architectural University, Changchun, Jilin Province, 130118, China

Abstract

Fe3O4 nanoparticles (NPs) have been widely used in biomedicine due to their unique magnetism, biocompatibility, and biodegradability. Magnetic hyperthermia of Fe3O4 NPs for cancer treatment has attracted more attention. However, it could interfere with magnetic field-sensitive devices of patients, such as pacemakers. Therefore, it is necessary to find a new method for clinical therapy. In this study, the superparamagnetic Fe3O4 NPs were fabricated. Visible-near-infrared absorption spectra indicated that the Fe3O4 NPs have near-infrared absorption. The influences of Fe3O4 NP concentrations, power density, and wavelength of near-infrared laser irradiation on the photothermal performance of Fe3O4 NPs were investigated. The results revealed that high concentrations, large power density, and short irradiation wavelength could improve the photothermal performance of Fe3O4 NPs. The temperature variation and the absorption intensity simultaneously determined the photothermal transduction efficiency of Fe3O4 NPs. The application of the photothermal performance of Fe3O4 NPs would provide a new opportunity for clinic cancer treatment.

Funder

Jilin Provincial Education Department “13th Five-Year” Science and Technology Research Planning Project

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3