An Intrusion Detection Method Based on Decision Tree-Recursive Feature Elimination in Ensemble Learning

Author:

Lian Wenjuan1,Nie Guoqing1ORCID,Jia Bin1ORCID,Shi Dandan1,Fan Qi1,Liang Yongquan1

Affiliation:

1. College of Computer Science & Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Abstract

With the rapid development of the Internet, various forms of network attack have emerged, so how to detect abnormal behavior effectively and to recognize their attack categories accurately have become an important research subject in the field of cyberspace security. Recently, many hot machine learning-based approaches are applied in the Intrusion Detection System (IDS) to construct a data-driven model. The methods are beneficial to reduce the time and cost of manual detection. However, the real-time network data contain an ocean of redundant terms and noises, and some existing intrusion detection technologies have lower accuracy and inadequate ability of feature extraction. In order to solve the above problems, this paper proposes an intrusion detection method based on the Decision Tree-Recursive Feature Elimination (DT-RFE) feature in ensemble learning. We firstly propose a data processing method by the Decision Tree-Based Recursive Elimination Algorithm to select features and to reduce the feature dimension. This method eliminates the redundant and uncorrelated data from the dataset to achieve better resource utilization and to reduce time complexity. In this paper, we use the Stacking ensemble learning algorithm by combining Decision Tree (DT) with Recursive Feature Elimination (RFE) methods. Finally, a series of comparison experiments by cross-validation on the KDD CUP 99 and NSL-KDD datasets indicate that the DT-RFE and Stacking-based approach can better improve the performance of the IDS, and the accuracy for all kinds of features is higher than 99%, except in the case of U2R accuracy, which is 98%.

Funder

Shandong University of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3