Seismic Fragility Analysis of the Reinforced Concrete Continuous Bridge Piers Based on Machine Learning and Symbolic Regression Fusion Algorithms

Author:

Zhu Hanbo12ORCID,Miao Changqing12ORCID

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 210096, China

2. School of Civil Engineering, Southeast University, Nanjing 211189, China

Abstract

In the fragility analysis, researchers mostly chose and constructed seismic intensity measures (IMs) according to past experience and personal preference, resulting in large dispersion between the sample of engineering demand parameter (EDP) and the regression function with IM as the independent variable. This problem needs to be solved urgently. Firstly, the existing 46 types of ground motion intensity measures were taken as a candidate set, and the composite intensity measures (IMs) based on machine learning methods were selected and constructed. Secondly, the modified Park–Ang damage index was taken as EDP, and the symbolic regression method was used to fit the functional relationship between the composite intensity measures (CIMs) and EDP. Finally, the probabilistic seismic demand analysis (PSDA) and seismic fragility analysis were performed by the cloud-stripe method. Taking the pier of a three-span continuous reinforced concrete hollow slab bridge as an example, a nonlinear finite element model was established for vulnerability analysis. And the composite IM was compared with the linear composite IM constructed by Kiani, Lu Dagang, and Liu Tingting. The functions of them were compared. The analysis results indicated that the standard deviation of the composite IM fragility curve proposed in this paper is 60% to 70% smaller than the other composite indicators which verified the efficiency, practicality, proficiency, and sufficiency of the proposed machine learning and symbolic regression fusion algorithms in constructing composite IMs.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3