Construction Technology and Quality Control of Power and Electrical Engineering Based on Convolutional Neural Network

Author:

Xiao Lei1ORCID

Affiliation:

1. The 17th Project Department, Installation Engineering Company, Weifang Changda Construction Group Co., Ltd., Weifang 261000, Shandong, China

Abstract

In the context of the Internet era, more and more parties have begun to store, process, and analyze data, but the accompanying question is whether people are reasonable about the data under the impact of massive data, effective and efficient analysis, especially the problems faced in this project. This article aims to study the quality control problems faced by electric power and electrical engineering in the construction process through the use of convolutional neural networks. Under this idea, this article proposes a multilayer convolution method. The experimental results show that the use of the improved multilayer convolution method for the convolution method of the convolutional neural network can effectively improve the multiple analysis problems of small datasets in the construction of electric power and electrical engineering; in this way, the relevant data are analyzed; by controlling the quality of construction, the quality problem has been greatly improved. After comparison, it is concluded that the overall construction quality has increased by 35%.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3