Affiliation:
1. Institute of Mechanical and Vehicle Engineering, Changchun University, Changchun, China
2. Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun, China
3. College of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
Abstract
With the popularization of integrated circuits, MEMS, and portable electronic devices, chemical batteries have many disadvantages as the main energy supply method, such as large size, high quality, and limited energy supply life, requiring regular replacement, resulting in waste of materials, environmental pollution, and other issues. From the above reasons, energy harvesting technology plays an important role in improving the efficiency and life of electronic equipment. In order to explore the influence of the bimorph piezoelectric vibrator’s structural parameters on the power generation capacity, this paper establishes a cantilever beam rectangular bimorph piezoelectric vibrator power generation model, derives the mathematical expression of the bimorph piezoelectric vibrator power generation, and determines the parameter factors that affect the power generation effect. Using MATLAB simulation analysis to obtain the influence relationship curve of system output voltage and structural parameters, the experiment tests the influence law of output voltage and thickness ratio, width-to-length ratio, and Young’s modulus ratio; the test results are consistent with the theoretical analysis, verifying the theory and the correctness of the analysis. The results show that when the thickness ratio is 0.58 and the width-to-length ratio is 1, the power generation effect of the piezoelectric vibrator is the best to reach 14.5V; the power generation capacity of the transducer is inversely proportional to Young’s modulus ratio. This research provides a new idea for the popularization of integrated circuits, MEMS, and portable electronic devices.
Funder
National Natural Science Youth Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献