Affiliation:
1. College of Information Science & Technology, Hainan University, Haikou, China
2. State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, China
Abstract
The Modulated Wideband Converter (MWC) can provide a sub-Nyquist sampling for continuous analog signal and reconstruct the spectral support. However, the existing reconstruction algorithms need a priori information of sparsity order, are not self-adaptive for SNR, and are not fault tolerant enough. These problems affect the reconstruction performance in practical sensing scenarios. In this paper, an Adaptive and Blind Reduced MMV (Multiple Measurement Vectors) Boost (ABRMB) scheme based on singular value decomposition (SVD) for wideband spectrum sensing is proposed. Firstly, the characteristics of singular values of signals are used to estimate the noise intensity and sparsity order, and an adaptive decision threshold can be determined. Secondly, optimal neighborhood selection strategy is employed to improve the fault tolerance in the solver of ABRMB. The experimental results demonstrate that, compared with ReMBo (Reduce MMV and Boost) and RPMB (Randomly Projecting MMV and Boost), ABRMB can significantly improve the success rate of reconstruction without the need to know noise intensity and sparsity order and can achieve high probability of reconstruction with fewer sampling channels, lower minimum sampling rate, and lower approximation error of the potential of spectral support.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献