A Combination Therapy of pHRE-Egr1-HSV-TK/Anti-CD133McAb-131I/MFH Mediated by FePt Nanoparticles for Liver Cancer Stem Cells

Author:

Lin Mei1ORCID,Xiao Yanhong2ORCID,Jiang Xingmao3,Zhang Jun4,Guo Ting5ORCID,Shi Yujuan2

Affiliation:

1. Clinical Laboratory, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China

2. Imaging Department, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China

3. Hubei Key Lab of Novel Reactor & Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

4. Isotopic Laboratory, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China

5. Institute of Clinical Medicine, Taizhou People’s Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China

Abstract

It has been evidenced that liver cancer stem cells (LCSCs) are to blame hepatocellular carcinoma (HCC) occurrence, development, metastasis, and recurrence. Using iron-platinum nanoparticles (FePt-NPs) as a carrier and CD133 antigen as a target, a new strategy to targetly kill LCSCs by integrating HSV-TK suicide gene, 131I nuclide irradiation, and magnetic fluid hyperthermia (MFH) together was designed and investigated in the present study. The results showed that FePt-NPs modified with PEI (PEI-FePt-NPs) could bind with DNA, and the best binding ratio was 1 : 40 (mass ratio). Moreover, DNA binding to PEI-FePt-NPs could refrain from Dnase1 enzyme digestion and could release under certain conditions. LCSCs (CD133+ Huh-7 cells) were transfected with pHRE-Egr1-HSV-TK by PEI-FePt-NPs, and the transfection efficiency was 53.65±3.40%. These data showed a good potential of PEI-FePt-NPs as a gene transfer carrier.131I was labeled with anti-CD133McAb in order to facilitate therapy targeting. The combined intervention of pHRE-Egr1-HSV-TK/anti-CD133McAb-131I/MFH mediated by PEI-FePt-NPs could greatly inhibit LCSCs’ growth and induce cell apoptosis in vitro, significantly higher than any of the individual interventions (p<0.05). This study offers a practicable idea for LCSC treatment, and PEI-FePt-NPs may act as novel nonviral gene vectors and a magnetic induction medium.

Funder

Taizhou People’s Hospital Medical Innovation Team Foundation

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3