Mathematical Modelling for the Role of CD4+T Cells in Tumor-Immune Interactions

Author:

Makhlouf Ahmed M.1ORCID,El-Shennawy Lamiaa2,Elkaranshawy Hesham A.1ORCID

Affiliation:

1. Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, Egypt

2. Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

Abstract

Mathematical modelling has been used to study tumor-immune cell interaction. Some models were proposed to examine the effect of circulating lymphocytes, natural killer cells, and CD8+T cells, but they neglected the role of CD4+T cells. Other models were constructed to study the role of CD4+T cells but did not consider the role of other immune cells. In this study, we propose a mathematical model, in the form of a system of nonlinear ordinary differential equations, that predicts the interaction between tumor cells and natural killer cells, CD4+T cells, CD8+T cells, and circulating lymphocytes with or without immunotherapy and/or chemotherapy. This system is stiff, and the Runge–Kutta method failed to solve it. Consequently, the “Adams predictor-corrector” method is used. The results reveal that the patient’s immune system can overcome small tumors; however, if the tumor is large, adoptive therapy with CD4+T cells can be an alternative to both CD8+T cell therapy and cytokines in some cases. Moreover, CD4+T cell therapy could replace chemotherapy depending upon tumor size. Even if a combination of chemotherapy and immunotherapy is necessary, using CD4+T cell therapy can better reduce the dose of the associated chemotherapy compared to using combined CD8+T cells and cytokine therapy. Stability analysis is performed for the studied patients. It has been found that all equilibrium points are unstable, and a condition for preventing tumor recurrence after treatment has been deduced. Finally, a bifurcation analysis is performed to study the effect of varying system parameters on the stability, and bifurcation points are specified. New equilibrium points are created or demolished at some bifurcation points, and stability is changed at some others. Hence, for systems turning to be stable, tumors can be eradicated without the possibility of recurrence. The proposed mathematical model provides a valuable tool for designing patients’ treatment intervention strategies.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3