SCOTT: Scheduling of Comprehensive Objectives for Tasks with Multitargets in Computing Networks

Author:

Zhang Guowei1ORCID,Liu Zening2ORCID,Wang Kunlun3ORCID,Zang Xiaodong1ORCID,Zuo Yong4ORCID,Yang Yang567ORCID

Affiliation:

1. School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China

2. Purple Mountain Laboratories, Nanjing 211111, China

3. School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China

4. College of Electronic Science and Technology, National University of Defense Technology, Hunan 410003, China

5. Terminus Group, Beijing 100027, China

6. Peng Cheng Laboratory, Shenzhen 518055, China

7. Shenzhen Smart City Technology Development Group Co. Ltd., Shenzhen 518046, China

Abstract

Local and customized services are realized with new type computing architecture by utilizing the spare resources distributed on the helper nodes (HNs) throughout the network. The heterogeneity of mobile edge and fog computing networks makes them natural to support multitarget tasks, and efficient task scheduling is always a fundamental and hot issue in multitask multihelper (MTMH) computing networks. Unlike most of the researches concentrating on the optimization of a single or limited service metrics, this article proposes a service framework for multitarget tasks, which is more universal for future 6G networks supporting customized services. The comprehensive quality of service (CQoS) is constructed to indicate the comprehensive objectives of the task nodes (TNs) with multiple targets. By formulating and transforming the CQoS maximal problem into two one-variable form subproblems, an algorithm named scheduling of comprehensive objectives for tasks with multitargets (SCOTT) is proposed. The SCOTT algorithm achieves the optimal offloading service solutions considering service metrics including delay, energy consumption, and economic cost. Extensive numerical simulations are carried out, which indicate that the proposed SCOTT algorithm can effectively achieve the optimal offloading solutions including node selection, task division, and transmission power for TNs with various service targets. Moreover, the universal applicability of the SCOTT algorithm is verified with case studies and numerical results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3