An Integration of New Digital Image Scrambling Technique on PCA-Based Face Recognition System

Author:

Abusham Eimad1ORCID,Ibrahim Basil1ORCID,Zia Kashif2ORCID,Al Maskari Sanad1ORCID

Affiliation:

1. Sohar University, Faculty of Computing and Information Technology, Sohar, Oman

2. University of Glasgow, Glasgow, UK

Abstract

Systems using biometric authentication offer greater security than traditional textual and graphical password-based systems for granting access to information systems. Although biometric-based authentication has its benefits, it can be vulnerable to spoofing attacks. Those vulnerabilities are inherent to any biometric-based subsystem, including face recognition systems. The problem of spoofing attacks on face recognition systems is addressed here by integrating a newly developed image encryption model onto the principal component pipeline. A new model of image encryption is based on a cellular automaton and Gray Code. By encrypting the entire ORL faces dataset, the image encryption model is integrated into the face recognition system’s authentication pipeline. In order for the system to grant authenticity, input face images must be encrypted with the correct key before being classified, since the entire feature database is encrypted with the same key. The face recognition model correctly identified test encrypted faces from an encrypted features database with 92.5% accuracy. A sample of randomly chosen samples from the ORL dataset was used to test the encryption performance. Results showed that encryption and the original ORL faces have different histograms and weak correlations. On the tested encrypted ORL face images, NPCR values exceeded 99%, MAE minimum scores were over (>40), and GDD values exceeded (0.92). Key space is determined by u 2 s i z e A 0 where A0 represents the original scrambling lattice size, and u is determined by the variables on the encryption key. In addition, a NPCR test was performed between images encrypted with slightly different keys to test key sensitivity. The values of the NPCR were all above 96% in all cases.

Funder

Sohar University

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3