An End-to-End Data-Adaptive Pancreas Segmentation System with an Image Quality Control Toolbox

Author:

Zhu Yan1ORCID,Hu Peijun2,Li Xiang34,Tian Yu1,Bai Xueli34,Liang Tingbo34,Li Jingsong12ORCID

Affiliation:

1. Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China

2. Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311100, China

3. Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China

4. Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou 310006, China

Abstract

With the development of radiology and computer technology, diagnosis by medical imaging is heading toward precision and automation. Due to complex anatomy around the pancreatic tissue and high demands for clinical experience, the assisted pancreas segmentation system will greatly promote clinical efficiency. However, the existing segmentation model suffers from poor generalization among images from multiple hospitals. In this paper, we propose an end-to-end data-adaptive pancreas segmentation system to tackle the problems of lack of annotations and model generalizability. The system employs adversarial learning to transfer features from labeled domains to unlabeled domains, seeking a dynamic balance between domain discrimination and unsupervised segmentation. The image quality control toolbox is embedded in the system, which standardizes image quality in terms of intensity, field of view, and so on, to decrease heterogeneity among image domains. In addition, the system implements a data-adaptive process end-to-end without complex operations by doctors. The experiments are conducted on an annotated public dataset and an unannotated in-hospital dataset. The results indicate that after data adaptation, the segmentation performance measured by the dice similarity coefficient on unlabeled images improves from 58.79% to 75.43%, with a gain of 16.64%. Furthermore, the system preserves quantitatively structured information such as the pancreas’ size and volume, as well as objective and accurate visualized images, which assists clinicians in diagnosing and formulating treatment plans in a timely and accurate manner.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2D and 2.5D Pancreas and Tumor Segmentation in Heterogeneous CT Images of PDAC Patients;2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3